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i 
1 Abstract 

The primal-dual method is interpreted as a parametric 
i 

linear programminc method. Some variants and related methods, 

such as Dantzig's self-dual parametric method and the linear 

programming variant of Houthakker's capacity method for qua- 

dratic programming are considered and compared. 

1.  INTRODUCTION 

In a well-known paper by Dantzig. Ford, and Pulkerson (2), 

a method for solving a linear programming problem was presented. 

In effect, they gave a set of rules which they proved would lead 

ultimately to an optimal solution - if one existed. In the 

course of presenting the specific rules of the method, they gave 

an interpretation to the algorithm involving the formulation of 

both the primal and the dual problems. Here we give an alterna- 

tive interpretation of the method leading to the same set of 

rules. 
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It turns out that the primal-dual method can be Interpreted 

as a parametric method of a very simple sort. In the following, 

this method is explained by means of a simple example. The 

equivalence with the primal-dual method is then considered in 

some detail. 

The parametric problem concerned is one with a parametric 

objective function. Its dual problem has a parametric right- 

hand side. This problem may be solved parametrically. Any 

problem which has an initial feasible solution can be treated in 

the same manner; the resulting method may be called the dual 

equivalent of the primal-dual method. This method is closely 

related to the linear programming variant of Houthakker's ca- 

pacity method in its simplicial formulation. The latter method 

can be proved to be equivalent to Dantzl^s self-dual parametric 

method. These matters are discussed in the last section. 

2.  A PARAMETRIC METHOD FOR LINF.AR PROGRAMMING 

We consider the following linear programming problem. Mini- 

mise 

(2.1) f - c'x 

subject to 

(2.2) Ax - b 

(2.3) x > 0 

c and x are column vectors of n elements, b is a column vector 

of m elements and A Is an m x n matrix; the symbol * denotes 

transposition. We assume that the elements of b and c are non- 
1 

negative. We also assume that there is at least one feasible 

1 
For cases in which the elements of c are not nonnegative, 

see Dantzig, Ford and Pulkerson (2) or Dantzig (1). There it is 
proposed to add an "artificial constraint" e'x < e for a large 
unspecified value of e and to generate a feasible solution to 
the dual problem. 
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solutlon to the constraints (2.2), (2.3)* 

Let us also consider the following related problem which we 

shall call the extended problem. Minimize 

(2.4) f» ■ c'x ♦ Xe'y 

subject to 

(2.5) Ax ♦ y - b, 

(2.6) x, y i 0. 

y is a column vector of m artificial variables, e is a vector of 

m elements which are all unity and X is a variable parameter. 

For a sufficiently high value of Xt  the solution of the 

extended problem must be the same as that of the original prob- 

lem, because such a value of x will prevent the y-variables from 

having nonzero values. On this, the usual two-phase method for 

linear programming is based. The extended problem with X having 

a very high value is solved instead of the original problem with 

an initial basic solution y ■ b. This amounts to minimizing 

first the objective function 

(2.7) e'y - Ey, 

since the terms in X are dominant; this leads to a feasible so- 

lution of the original problem, after which the original objec- 

tive function can be used to find the optimal solution. 

The following parametric method also uses the extended prob- 

lem, but instead of solving tue problem immediately for a high 

value of x, we solve the problem first for X ■ 0, after which X 

is increased parametrically. The initial basic feasible solution 

y ■ b is x ■ 0 also an optimal solution, since all elements of c 

are assumed to be nonnegative. After that, parametric linear 

programming (see Qass and Saaty (3))is used to trace the optimal 
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solutlons of the extended problem for increasing values of X. 

The solution for X -•• • must be the optimal solution of the ori- 

el nal problem. 

This parametric method Is equivalent to the primal-dual 

method In the sense that Its computational rules are the same; 

It can therefore be viewed as an alternate Interpretation of th. 

primal-dual method.    First an example of application of this 

parametric method will be given.    In the next section, this ex- 

ample will be used to explain the equivalence. 

As an example, we take the problem used by Dantzlg  (1)  for 

the primal-dual method.     Minimize 

(2.0) f - x    + 4x- + 8x„ + 8x, + 23X,. 
1 « 3 *♦ o 

subject to 
(Xj + 1x2 - 5x3 ♦ 7xH ■• Mx5 « 8, 

(2.9) (       - 4x2 f i<x3 - JJxj, + ^x5 » 2, 

( x2 - 3x3 +  Hxn  - 2x5 ■ 2, 

(2.10) x   ,  x2,  x^,  Xi,,  x^   >  0. 

In the formulation of the extended problem,  the terms 

Xy + Xy 4- xy 
12    3 

are added to the objective function and y^ y and y are added 

to the left side of the respective equations of (2.9). The Ini- 

tial basic solution Is then y1 ■ 8, y2 ■ 2 and y^ ■ 2 and the 

corresponding Initial tableau Is obtained by subtracting x times 

the equality conrtralnts of the extended problem from its objec- 

tive function. This objective function becomes then 

(2.11) f» ■ x1 ♦ Ixg + 8x3 + 8xi| ♦ 23x5 

♦ X(- 12 - Xj^ - x2 + ^x- - Txi, + 2x5). 

Putting the X terms in a separate row, the initial tableau as 

given in Tableau 0 of TaMe 1 is obtained; the value of the 
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terms without X Is Indicated by f, that of the terms with X by 

w. Adding to the f-row X times, the w-row for specific values 

of X, a row Is obtained which represents the objective function 

for specific values of X. 

In Tableau 0 of Table 1, the specific value of x Is first 

taken to be 0. For this value, the Initial solution Is also an 

optimal solution of the extended problem, since all coefficients 

in the row -f*(0) are non-negative. Next, consider for what 

range of x the present solution Is an optimal one.  Its upper 

bound Is determined by 

(2.12) Mln / f 

where f^ stands for the element In the f-row and In the 1-th 

wi < o !, 

/ 

column and w^ 'or the element In the w-row and In the same 

column.  In Tableau 0, It turns out that the highest value of X 

for which the solution Is optimal Is 1, because for that value 

the coefficient of x^ In the objective function, becomes zero. 

The row -f*(l) gives then the value of the objective function 

for X ■ 1. According to the usual parametric procedure, Xj 

enters the basis and y leaves It. Tableau 0 Is then trans- 

formed Into Tableau 1. Note tha*^ the value of w has decreased, 

as It should, because a variable having a negative coefficient 

in the w-row entered the basis. The column of y. which Is now 

a nonbaslc variable Is deleted because we do not wish y^ to 

re-enter the basis. 

The solution of Tableau 1 Is optimal for X ■ 1.  An upper 

bound on X for which this solution Is optimal Is found by apply- 

ing (2.12) again; this upper bound turns out to be X « 13. 



TABIE 1. SIMPLEX TABLEAUX FOR EXAMPLE 

Tabl. Basic 
Var. 

Values 
Bas. V. 

Nonbaslc Variable? 1 
xl x2 x3 

x1 x5 

^2 

8 

2 

1 

0 -1* 

-5 

1 

7 

-1 

-1 

1 

1  0 y
3 1   2 0 1 -3 1 -2 

-w -12 -1 -1 1 -7 2  ! 

-f 0 1 4 8 8 23 

-f»(0) 0 1 a 8 8 23 

-fÄ(l) -12 0 3 12 1 25  1 
x2 x3 

x1 X5 

xl 
8 n 5 7 -1 I 

1 

^2 2 

2 1 

1 

-3 

-1 

1 

1 

-2 

-w -1» 3 -1 0 -2  | 

-f -8 0 13 1 27 

-f»(l) -12 3 12 1 
25 

-f»(13) -60 39 0 1 1  1 
x2 x1 x5 

xl lOh -1 2 1 | 

x3 H -1 ' -1 1 

1   2 
y3 3H -2 1 1 

-w -3»J 2 -1 -1 1 
-f -l^Uj 13 11 11 

-f»(13) -60 39 1 1 1 

-f«(lM) -63»s 11 0 o I 
x2 X5 

xl 3S 3 -1 1 

3 

x3 
ii -3 

-2 

2  I 
1 

-w 0 0 0  | 

-f -63»« 11 o 
-f«(l^) -63% U 0 

X2 x? 
xl 5H 1H H    1 
x5 

2 .l«j H 

i) 
xi| 1H -H i -^  1 

-f -63«j 11 0 ! 

• 
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x must then enter the basis and y leaves It; the column of 

yg Is deleted In the resulting tableau. 

In Tableau ?, it turns out that the minimum in (2.12) is 

not unique, because the coefficients of x^ and x in the f^-row 

both vanish for X ■ 1*1. This is a degenerate solution, but it 

causes no difficulty because whichever variable enters into the 

basis, the value of w decreases. Hence, either variable may 

enter the basis. Choosing x^, we find that y must leave the 

basis. The solution of the resulting tableau is found to be 

the optimal solution, since w has a zero value. This optimal 

solution is not unique because the coefficient of f in the 

column of x_ is zero. The corresponding extreme-point optimal 

solution is generated in Tableau 4. 

3.  EQUIVALENCE WITH THE PRIMAL-DUAL f^ETHOD 

The primal-dual method starts with a feasible solution to 

the dual of the original problem. The general lorm of this 

dual problem is, see (2.1)»(2.3): 

Maximize 

(3.1) b'u 

subject to 

(3.2) A'u < c. 

u is a column vector of m elements.  Introducing a vector v of 

n slack variables, the constraint (3.2) can be written as 

(3.3) A'u * v < c, 

(3.'*) v ^ 0. 

Because it was assumed that the elements of c are nonnegative, 

an initial feasible solution is v « c, u * 0.  However, this 
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solutlon Is not likely to be an optimal one, since all elements 

of b are nonnegative. 

We consider also the primal feasibility problem: Minimize 

(3.5) e'y 

(3.6) Ax + y ■ b, 

(3.7) x, y > 0, 

and Its dual:  Maximize 

(3.8) b'u» 

subject to 

(3.9) A'u» < 0, 

(3.10) u« < e. 

Constraint (3.9) can be written as 

(3.11) A'u« + v» - 0, 

(3.12) v» > 0. 

The primal-dual method Is based on the following Ideas. 

An Initial solution of the dual problem (3.1)-(3.2) Is avail- 

able. Suppose there are some vectors u*, v* which give a 

positive value of the objective function of tiie dual feasibility 

problem; for this latter solution, (3.12) need not be satisfied. 

If the first solution Is u, v, and the second uÄ, v*, then the 

solution 

(3.13) ü + ku», v -f kv« 

must give a higher value of the objective function of the dual 

problem for k > 0, since b'u* was assumed to be positive. How- 

ever, v* was not necessarily positive, so that for some value 

of k i 0, v -f kv» might become negative. Hence we determine 

(3.W v» < 0 
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If this value of k Is used In  (3.13),  the  objective function of 

the d:ial Is Increased as much as possible without making Its 

solution Infeaslble.     After this, a new solution to the dual 

feasibility problem Is generated and added to the solution of 

the dual In the same manner as before.    The dual objective 

function Is Increased until no Improvement Is possible because 

the objective function of the dual feasibility problem has be- 

come zero.    The optimal solution of the dual problem has then 

been obtained. 

The solutions of the dual feasibility problem are obtained 

via the primal feasibility problem; the dual variables appear 

then In the row of the objective function.    The method starts 

usually with a solution of the dual problem v ■ c, u ■ 0, 

which Is a feasible solution.    For the prlral feasibility 

problem, the solution y ■ b,  x ■ 0 Is taken.    The corresponding 

basic  solution of the dual feasibility problem Is 

(3.15) u» - e,  v» « -A'u«  «  -A'e; 

the value of Its objective function Is b'e which Is positive 

If b has at least one positive element.     Adding a multiple k 

determined by (3.1^)  of the solution  (3.15)  to that of the dual 

problem, we find that the objective function of the dual prob- 

lem Is Increased for k i 0; k ■ 0 can only occur If some basic 

v-varlables are zero for corresponding negative v1-varlable8. 

This can only occur In the first Iteration, because there are 

some additional requirements for solutions of the feasibility 

problem In later Iterations.    These are,  given the Improved 

solution of the dual problem, a restricted primal Infeatilblllty 

problem Is solved,  In which the variables to enter the basis 
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are restricted to those which have zero corresponding variables 

in the dual problem.  These will be the basic variables and the 

variable connected with k In (3.11*); If the minimum was not 

unique, then all the variables connected with this minimum art 

included plus possible other variables connected with zero v- 

variables. The optimal solution to this restricted primal 

feasibility problem is one with v*~variables of the correspond- 

ing dual which are nonnegative for v-variables which are zero. 

Hence when we next add the solution of the corresponding dual 

feasibility problem to the dual solution, k Is nonzero. After 

this, another restricted primal feasibility problem is solved 

and so on, until t!«e objective function of the feasibility 

problem has become zero; in that case the optimal solution of 

the dual problem has been found, and also the solution of the 

original problem. 

Let us now compare the primal-dual method with the para- 

metric approach using the numerical example presented in the 

previous section. Tableau 0 of Table 1 gives the initial so- 

lution of the primal feasibility problem; the w-row gives the 

value of Its objective function and the values of the basic 

variables of the corresponding dual solution. Hence we have 

v« « -1, v« • -1, v» m kt    v» - -7, v • 2. 

The f-row now gives the values of the objective function of 

the original dual problem and its corresponding solution. The 

solution of the dual problem is 

Vl ' 1*    V2 * ^ V3 " ^ % * ^ V5 ' 23, 

Now k times the w-row is added to the f-row, thus increasing 

the objective function of the dual from 0 to 12k. The maximum 
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value of k turns out to be 1; the row -f*(l) gives the Improved 

value of the objective function of t^e dual as well as the cor- 

responding solution of the dual.  According to the parametric 

procedure, x must enter the basis. The same Is true for the 

primal-dual method, since In the restricted primal feasibility 

problem only x and the basic variables may be In the basis. 

In the resulting transformation both methods transform the row« 

of basic variables and the w-row In the same way; the primal- 

dual method has no f-row and It does not transform the present 

solution of the dual problem. The parametric procedure trans- 

forms the f-row or -f*(l)-row, but this last row does not 

change since Its element In the x -column Is zero. 

In the next tableau the primal-dual method adds k times 

the w-row to the fMl).  k is then found to be 12 and Is con- 

nected with x . The parametric procedure adds X times the 

w-rows to the f-row and finds X ■ 12, connected with x . The 

result, the row Indicated by -f*(13) Is, In both cases, the 

same.  As Is easily seen, k Is equal to the Increase In x. 

Each cycle In the primal-dual method corresponds with a 

particular value of X In the paramotrlc approach. The restrict- 

ed columns of the primal feasibility problem are the same as 

the columns which have the same ratio x of elements in the 

f- and the w-row. Usually the optimal solution to the restrict- 

ed primal feasibility problem will be obtained in one Iteration, 

but it is possible that it takes more Iterations.  This can 

be the case when the maximum from which k or X is found is not 

unique. The adjusted dual solution contains then more than 

one zero apart from the basic variables.  An example of this 
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can be found In Tableau 2, where both x. and x are connected 
H 5 

with the minimum in (3.1*0.  x., and xc are then both columns of 

the restricted primal feasibility problem and if x_ Is chosen 

as a basic variable instead of x., it takes two iterations to 

obtain the solution of the restricted problem.  Again there is 

no substantial difference with the parametric procedure. 

Hence it may be concluded that both procedures are equiv- 

alent and differ only by having k in the primal-dual method 

which is equal to the increment of X used in the parametric 

method. The two methods may therefore be seen as two alter- 

native interpretations of the same algorithm. 

**.  VARIANTS AND RELATED PARAMETRIC METHODS 

The dual of the extended problem is as follows.  Maximise 

(i*.l) f = b'u 

subject to 

(1.2) A'u < c, 

(1.3) u < Xe. 

The last set of constraints does not occur ^n the original 

problem but corresponds to the artificial variables in the 

extended problem. 

Each method for the primal linear programming problem has 

its equivalent method for the dual problem; for instance, the 

dual method for the primal problem is equivalent to the Simplex 

method for the dual problem.  We shall now indicate the equiv- 

alent method of the parametric method described in Section 2. 

The initial tableau can be obtained as follows. The 

constraints (1.2) and (1.3) can be written as equations by 
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means of the Introduction of the vectors of slack variables 

v and z: 

(I.**) A'u •»• v » c, 

(^.5) u + r = xe, 

(^.6) v, z > 0. 

Putting the equations (^.1), (^.4) and (^.5) Into tableau 

format, we obtain the set-up tableau given In Table 2; the 

values of basic variables are separated Into a constant term 

and a term dependent on X.  In the equivalent primal method the 

y-varlables were basic and the x-varlables nonbaslc In the 

Initial solution.  In the dual equivalent the z-varlables must 

therefore be nonbaslc and the v-varlables basic; the u-varlabler 

must be basic because there are no slack variables In the 

primal problem. This Initial solution and Its corresponding 

tableaux are generated by block-pivotIng on the underlined 

matrix I In the set-up tableau In order to Introduce the u- 

varlables In the basis, replac4, - the z-varlables. After the 

u-varlables have entered the basis, their r^ws may be deleted, 

because the u-varlables are unrestricted. 

TABLE 2.  SET-UP AND INITIAL TABLEAU FOR EQUIVALENT DUAL METHOD 

Bas. 

Var. 

Val.B.Var. 
u V z f 1 

C.t X-t 

Set-Up V c 0 A» I 0 0 | 

Tabl. z 0 e I 0 I 0 } 

f 0 0 -b' 0 0 i i 

Inlt. V c -A'e 0 I -A' o i 
Tabl. u 0 e I Ü I o | 

f 0 b'e 0 0 b' i 
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The Initial solution is optimal for x « 0 since b ard c 

are both nonnegative. After this, x is increased parametrically 

until X ♦ «. This method is completely equivalent to the 

primal-dual method. 

The dual equivalent of the primal-dual method may be 

applied to any linear programming problem with an Initial 

feasible solution. Consider the following problem. Maximize 

(4.7) f « c'x 

subject to 

(4.8) Ax < b, 
m 

^4.9) x > 0. 

We assume that both b and c are nonnegative. Adding the 

"artificial constraint" 

(4.10) x < Xe, 

we find that the problem has the same form as (4.1) - (4.3) 

apart from the fact that the x-varlables are restricted. The 

same method may now be applied. Table 3 gives the set-up and 

Initial tableaux of this method which may be celled the dual 

equivalent of the primal-dual method. 

Let us consider an application of this method to the 

following small problem. Maximize 

(4.11) f ■ 3x1 -t- 4x 

subject to 

(4.12) -xl + 2x < 2, 

(4.13) xl * x2 - lt 

(4.14) x^ x2 > 0. 
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TABLE 3.  SET-UP AND INITIAL TABLEAU FOR THE DUAL 

EQUIVALENT OP THE PRIMAL-DUAL METHOD 

i 
mmm 

Bas. 
Var. 

Val. D . Var. 
X y z 

f  1 
C.t x-t. 

y b 0 A i 0 0  j 
Set-Up 

z 0 e I c 1 0  | 
Tableau 

f 0 0 -c 0 
i 

0 1 \ 
1 

y b -Ae 0 I 1 -A  * 
1 

0  | 
Inlt. 

X 0 e I o 1 0 
Tableau  ! 

f 0   | c'e I 
■ ■  .i 

0 0 c» 1 1 
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Table ^ gives the successive solutions of the method. 

Tableau 0 Is constructed In accordance with the Initial tableau 

of Table 3. The critical value of x Is found to be 1; af this 

value y has to leave the basis.  Dual feasibility requires 

then that z should enter the basis. The next critical value 

of x Is ^i hence yp should leave the basis and It Is found 

that z. enters It.  In Tableau 2 no critical value of X can be 

found, so that the optimal solution must have been found.  Not 

all rows given In Table ^ are needed; the rows of the basic 

z-varlables can be deleted; furthermore, the rows of basic 

x-varlables with corresponding nonbaslc z-varlables are always 

the same so that they do not have to be written down. 

Instead of adding an "artificial constraint" for each 

variable as In (^1.10), we may Just add one "artificial con- 

straint" on the sum of the variables, 

0.15) e'x < X. 

An Initial feasible and optimal solution for X « 0 Is then 

found by Introducing Into the basis In the set-up tableau based 

on (^.7), 0.8) and 0.15), the variable with the largest 

c-coefflclent, replacing the slack variable of (4.15). After 

this, X Is varied parametrlcally until x -► •. Table 5 gives 

an application of this method to the problem (4.11) - (4.14). 

This procedure can be considered as a variant of Houthakker's 

capacity method for quadratic programming (4). For details, 

see van de Panne and Whlnston (5). 
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TABLE ^.  APPLICATION OF THE DUAL EQUIVALENT 

OP THE PRIMAL-DUAL METHOD 

1 Tableau 
Basic 

Values Basl( : Variables 

Variable C.t x - t 
zl Z2 

yi 

2 -1 1 -2 

72 

i    1 0 -1 1 

0 Xl 
0 1 1 0 1 

x2 
0 1 0 1 

f 0 7 3 4 

zl 
yi 

Z2 
-1 »I -»1 -»1 

y2 2 -H -h H 

1 xi 
0 1 i 0 

x2 1 «J h H 

f 1 5 5 2 

*2 
yi 

Z2 -3 1 -1 -1 

Zl   I -H 1 -2 -1 

2 Xl 4 0 2 1 

X2 
3 0 1 1 

f 21     ' 0 10 7 
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TABLE 5.  APPLICATION OP THE CAPACITY METHOD 

TO A LINEAR PROGRAMMING PROBLEM 

Tabl. Bas.V. 
Val.Bas. 

Var. X X2 
Tabl. Bas.V. Ind.t. X-t 

*! 

i 

y3i C.t. x-t. 

yi 

2 0 -1 2 xl -2/3 2/3 -1/3 2/3' 

0 1  y2 
y3 

1 

0 

0 

1 

-1 

1 
2 

y2 

X2 

2 1/3 

2/3 

-1/3 

1/3 

2/3 

1/3 

ill 
1/3 

f 0 0 -3 -^ f 2/3 3V3 1/3 3>3 

xl ^3 n y2 

H 2 -2 zl -2 xl 
k 0 1 2 

1 
y2 

X2 

1 

0 

1 

1 

1 

1 
3 

y3 

X2 

-7 

3 

1 

0 

-2 

1 

-3 

1 

f 0 
,       J 

^ 4 f 24 0 7 10 

A method which is related to the above approach is Dantzlg 

self-dual parametric method.2 First we shall deal with the 

special case in which the problem has the form (4.7) - (4.9) 

with b .lonnegative, and the elements of c positive. The fol- 

lowing objective function is then used: 

(4.16) f ■ (c - xej'x. 

For 

(4.17) x ^ Max c., 
J  J 

the initial solution in which the slack variables of (4.8) are 

basic is feasible and optimal. A parametric procedure is then 

used to decrease x until an optimal solution is found for x ■ 0 

this is then the solution of the original problem. 

2See Dantzlg (l) pp. 245 - 247. 
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TABLE 6.  APPLICATION OP DANTZIO'S 

SELP-DUAL PARAMETRIC METHOD 

1 Tabl. Bas.V. V.B.V. xl 
x2 1 

1  0 

y
l 

^2 

f(X) 

f(c) 

2 

1   1 

0 

0 

'  - 1 

xl yi! 

1 

1   x2 

1   y2 
f(x) 

f(c) 

1 

2 

-1 

* 

IS -^ 1 

y2 i *l 

2 

1   ** x1 

f(x) 

f(c) 

3 

4 

-7 

24 

2 

-3 

10 

-2 

7 

Table 6 gives the Iterations for an application of this 

method to the problem (4.11) - (4.14). The first critical 

value of x turns out to be 4, the second 3 1/3; after the 

second iteration the optimal solution has been found. 

For problems with all elements of b nonnegative and those 

of c positive the self-dual parametric method is equivalent 

to the capacity method for linear programming in the sense th?t 

it gener tes the same sequence of solutions which, however, 



-20- 

dlffer in some respects. In the capacity method the slack 

variable of the capacity constraint will be nonbasic In a?l 

tableaux except the first and last ones, whereas it may be 

considered a,z  a basic variable in the parametric method. A 

further difference is that the variable which in a certain 

iteration leaves the basis in the self-dual parametric iter- 

ation, leaves the basis in the capacity methrd in the cor- 

responding next iteration; yj leaves the basis in the first 

iteration in the capacity method (see Tableau 0 of Table 6), 

while in the capacity method it leaves the basis in the second 

iteration (see Tableau 1 of Table 5). 

The equivalence of botu methods can be proved by induction 

as follows.  In the first iteration the same variable enters 

the basis in both methods.  In the capacity method y , the 
A 

slack variable of the capacity constraint, leaves the basis, 

while in the parametric method an ordinary basic variable 

leaves the basis. 

Consider any tableau generated by the parametric method. 

A representation of such a tableau is given in the first 

tableau of Table 7; x stands for a typical bar.ic variable, 

x for a typical nonbasic variable and x for the variable 
K J 

which left the basis in the last iteration. The corresponding 

tableau for the capacity method can be generated from this 

tableau by introducing x into the basis, replacing f as a 

basic variable. The resulting tableau is then the second one 

of Table 7. We shall now check whether the variables to 

leave and to enter the basis ire the same in both methods. In 

the capacity method the variable to leave the jasis is deter- 
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mlned by 

(M.18) 
-1 -1 

Min |   bj - aydj dp   | dj  dp -a d"1 < 0 
1J J 

TABLE 7.  EQUIVALEMCF OF SELF-DUAL PARAMETRIC 

AND CAPACITY METHOD 

Bas. 
Var. Val.   B.  V. f» XJ 

1 
xk           .; 

Self- 
Dual 
Par. 
Meth. 

• 

• 

r 
X 

f c 

• 

• 

co 

0 

• 

1 

0 

• 

allc     ' aik 
>            .           . 

ck 

Bas. 
Var. 

Val.  Bas.  Var. 
*i      ' C.t. x-t. xk 

Cap. 
Meth. 

• 

• 

f c 

• 

bl-alJdJ  d0 

• 

dJldo 

• 

-alJdJ1 

t 

-VJ1 

• 

0     . 

.          1 

1   . 

0     . 

• 

alk-alJdJ  dk     • 

<                  .                • 

dj'ldk     • 

Since d. < 0 because x left the basis, this may be rewritten 
J J 

as 

(1.19) Mln ; -dn + V|l , -d 
*  ~0 a 0 

U 
aiJ < 0 

It 1P then obvious that the term behind the comma Is connected 

with the minimum so that x. leaves the basis, which Is as It 

should be. 

Also the variable to enter the basis Is the same.  In 
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the parametric method It Is determined by 

(4.20) Mln / ck dk . 0 

while In the capacity method It Is given by 

(4.21) Mln / ck - ^JdJ dk | d^d^ < 0 

-dJldk 
J k 

which can be rewritten as 

(4.22) Mln 
k 

-d1Jc + c^ 
Jdlt    •> 

for d < 0 this Is the same as (4.20). 

In his self-dual parametric method Dantzlg adds terms In 

X only to x-varlables which have positive coefficients In the 

objective function, while Houthakker Includes all x-varlables 

in this capacity constraint. This difference is a rather 

superficial one, since In the parametric method terms in A may 

be added to the coefficients of all x-varlables regardless of 

sign, while on the other hand, in the capacity method x-var- 

lables may be deleted from the capacity constraint if they have 

nonposltlve coefficients in the objective function. 

The main feature of the self-dual parametric method is, 

of course, that if a solution is neither primally nor dually 

feasible, terms in A may also be added to the values of basic 

variables in order to make this solution feasible; hence if all 

elements of b are negative, b is replaced by 

(4.23) b ♦ Ae; 

in case only some elements of b are negative we have instead 

of e a vector with unit elements corresponding with negative 

• y 
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elements of b and zeros elsewhere.    A parametric decrease In 

X affects then also primal  feasibility and the method may 

involve primal as well as dual  Iterations. 

A corresponding capacity method can be  constructed as 

follows.     Consider the following problem.    Maximize 

(4.24) f - c'x - xxA 

subject to 

(^.25) Ax - exx  + y « b, 

(^.26) e'x + yx«  x, 

(^•27) x,  xx,  y,  yx  >  0. 

Instead of the e-vectors we may again have vectors with unit 

elements only for negative elements of b and positive ones of 

c. x» is here an artificial variable corresponding with a dual 

capacity constraint 

(^.28) e'u < X. 

In the first iteration the x-variable corresponding with the 

largest positive element of c is introduced into the basis, 

replacing yx; in the second one, xx enters the basis, replac- 

ing the y-varlable corresponding with the largest (in absolute 

value) negative element of b. After this, X Is increased 

parametrically in the usual fashion. 

Comparing this version of the capacity method with the 

self-dual parametric method, it is found that the latter 

method is simpler, because its tableaux have one column and 

one row less, while furthermore the capacity method requires 

no extra Iterations. The self-dual parametric method should 

therefore be preferred to the capacity method. 
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